1. Squares:
1.1. Squares ending in 5:
Separate >> a | 5
Answer : a(a+1) | 25
Eg 352 >> 3 | 5 >> (3 X 4) | 25 >>1225
Sly, 452 >> 4 | 5 >> 20|25 >> 2025
1.2. General case:
Use Cross-multiply method of multiplication explained in previous post.
2. Cubes: (2 digit no >> ab3)
{a + b)3 = a3 + 3a2b + 3ab2 + b3
= a3 + a3(b/a)1 + a3(b/a)2 + a3(b/a)3 ……… (1)
+ 2 a2b + 2 ab2 …….. (2)
Modus Operandi:
i. Split no as a | b
ii. Find a3 and ratio b/a
iii. From this we get eq (1) by
We get next no by multiplying current no by the ratio b/a.
Left most no is a3.
iv. We get eq (2) by multiplying middle two terms of eq (1) by 2
v. Add only corresponding terms.
Eg. 273
Here a = 2, b = 3
Therefore, a3 = 8 , b/a = 7/2 (=3.5)
Therefore eq (1) = 8 | 28 | 98 | 343
(8 X 3.5 = 28, 28 X 3.5 = 98, 98 X 3.5 = 343)
eq (2) = | 56 | 196 |
(28 X 2 = 56, 98 X 2 = 196)
Sum = 8 | 84 | 294 | 343
Since only 1 digit can be inside on bar, carry forward
8 | 84 | 294 | 343
8 | 84 | 328 | 3
8 | 116 | 8 | 3
19 | 6 | 8 | 3
Therefore, 273 = 19683